
Generating textures on Surfaces with Reaction-Diffusion systems in
the GPU

Leonardo Carvalho Maria Andrade* Luiz Velho

IMPA, Brazil *UFAL, Brazil

Figure 1: Some results of the method. Complex patterns are formed in a few seconds using CUDA.

Abstract

In this paper we present a method to create textures on
smooth surfaces of arbitrary topology using Reaction-
Diffusion systems in a graphics processing unit (GPU).
To do this we use a parametrization of Catmull-Clark
subdivision surfaces and obtain the metric information
of the distortion caused by this parametrization, so we
can calculate differential operators of functions defined
on this surface. Then we solve the systems in the
domain of parametrization of each patch. This process
can be done in parallel for each point in the dis-
cretization of the surface, so the GPU implementation
can heavily increase the velocity of computation.

Keywords: surfaces; differential operators; Reaction-
Diffusion; CUDA; efficiency.

Authors’ contact:
{leo1984,mcosta,lvelho}@impa.br

1. Introduction and Related Work

Turing [1952] described for the first time a chemical
mechanism for pattern formation which is called
Reaction-Diffusion, where two or more chemicals react
one with the other, and they diffuse at different rates,
resulting in stable patterns like spots and stripes. This
mechanism has been replicated and expanded over the
years by researchers in several areas [Epstein and
Pojman, 1998]. Turk [1991] used it to generate textures
that match the geometry of polyhedral surfaces. More-
over, Sanderson et al. [2006] used many Reaction-
Diffusion models for textures synthesis. Bajaj et al.
[2008] gave an approach to solve Reaction-Diffusion
systems on surfaces using a Galerkin based finite
element methods.

The mechanism of Reaction-Diffusion involves a
numeric solution of a non-linear partial differential
equations system. This nonlinearity makes it difficult
to select appropriate parameters in order to ensure the
formation of stable patterns, which may take to the
user many attempts to obtain a reasonable result.
Another problem is that the solution can be
computational expensive, such that it can be time
consuming. To minimize this problem, algorithms can
take advantage of multiple processors computers,
solving the PDEs in parallel. A good choice is using
the Graphics Processing Units (GPUs), that were
originally developed to accelerate graphics operations,
like the rendering of a virtual scenario, but recently
they have been used to solve more general problems
that requires compute-intensive parallel computation,
due to the design of those units. In this case we can say
that they are General Purpose GPUs, or simply GP-
GPU. In [Sanderson et al. 2009] it is described a GP-
GPU-based approach for solving partial differential
equations (PDEs) for Reaction-Diffusion models using
Cg (C for graphics) [Mark et al. 2003], but this
language requires that the programmers understand the
graphics processing pipeline, and know how to solve
their problems in this context. NVIDIA developed
CUDA, a general purpose parallel computing
architecture that allows the programmers to develop
programs that run in the GPU using C as a high-level
programming language [NVIDIA 2011]. With this
architecture it is not necessary for the developer to
know the graphics pipeline, so it is possible to make
programs in the GPU without having to adapt the
solution of a problem to the graphics pipeline.

Stam [2003] developed a method to simulate fluids
on surfaces of arbitrary topology solving the Navier-
Stokes equations in the domain of the surface
parametrization. His method handles the distortion

caused by the parametrization and cross-patch
boundary conditions. The author used a parametri-
zation of a Catmull-Clark surface [Catmull and Clark
1978], using his evaluation method described in [Stam
1998]. It was briefly shown that this technique can be
used in the solution of other types of equations, like the
Reaction-Diffusion systems.

In our work we made a GPU implementation in
CUDA of the scheme introduced by Stam to solve
Reaction-Diffusion models on parametric surfaces.

2. Basic concepts

Let be a surface formed by parametric patches
, where , and

. We
use the tangent vectors

where is omitted to simplify notation, to define the
local metric matrix :

from which we get . The elements of the
inverse matrix are denoted by .

With this metric, we calculate differential operators
of functions defined on [Aris 1989]. In particular, the
Laplacian is given by

where we are using Einstein's notation (where
), with indices from 1 to 2.

To handle the intersection of adjacent patches, we
use the transition functions defined in [Stam 2003].
Each edge of a domain receives a label from 0 to 3,
and the transition function from patch to an adjacent
patch is calculated from a transition number that
depends only on the labels of the common edge of
these patches.

In this work we use the Catmull-Clark subdivision
scheme, with the evaluation technique developed by
Stam [1998], that gives us a parametrization, where
each quadrilateral in the polygonal base mesh
generates a parametric patch .

We discretize a surface like in [Stam 2003], where
for each patch there is a grid with cells
containing values from the patch, and there is an extra
layer of cells with values from neighbour patches. The
metric values from the parametrization are stored in a
denser grid with points. The
Laplacian operator is discretized by a finite differences
scheme for the derivatives, using metric values.

3. Reaction-Diffusion Systems

Reaction-Diffusion systems are defined by the non-
linear partial differential equations:

where and are substances distributed in space,
and are functions that control the production rate of

 and , and the coefficients and are the diffusion
rates.

These substances are affected by two processes:
local chemical reactions, which means that the
substances are transformed into each other, and
diffusion which causes the substances to spread out
over a surface in space.

We consider the Reaction-Diffusion model
developed by Gray and Scott [1985], which is defined
by

where and are real parameters.

Depending on the initial conditions the solution of
this system forms different patterns. It is necessary to
choose appropriate values for the parameters and ,
otherwise the result converge in time to a trivial
solution like and for all points.

4. Implementation in the GPU

We see that the problem described here can be easily
parallelized, so it is suitable to be solved using many
core processors, which can considerably improve the
performance of the method.

4.1 Data Structures

To implement the method in CUDA, firstly the
problem data must be transfered to the GPU memory.
In CPU the grid data are stored in arrays of size w × h
× n_patches, where n_patches is the number of patches
of the surface, such that the value v(i,j,p) at
position and patch is
accessed via v[i+j*w+p*w*h]. For scalar fields we
have w=h= N+2, so the value of a scalar field
centered at cell and patch is stored at
phi(i,j,p). For the metric we use w=h=2*N+1 to
store the values and . The value

 is accessed via g(2*i-1, 2*j-1, p), and
similarly for the other values. The arrays could be just
copied to the GPU global memory using arrays in the
same format and be used the same way as in the CPU,
but this way would not take advantage of the GPU
capabilities. A better option is put data in the texture or

surface memory, which are cached in the texture cache,
optimized for 2D spatial locality. In our case we can
use a layered surface reference putting the data of each
patch in a layer. The data of the patches are stored in
CUDA arrays created with cudaMalloc3DArray()
and copied from and to CPU using cudaMemcpy3D().
The value g(i,j,p) in surface memory is accessed
via surf2DLayeredread(&a,surf_ref,i*4,j,p)
where surf_ref is the surface reference bound to the
corresponding CUDA array, and we have to multiply
the x-coordinate by the byte size of the element
because surface memory uses byte addressing. We can
also write in the grid using
surf2DLayeredwrite(a,surf_ref,i*4,j,p).

4.2 Precomputing

The surface evaluation needs to be calculated only
once, we calculate for each point of the discretization
its position on the surface, the derivatives for each
direction and , and from that we calculate the
metric information.

The surface is evaluated with an implementation in
CUDA of the method described in [Stam 1998]. Each
point on the surface can be evaluated by

 where is the
number of control points used by patch , is the
projection of the i-th control point into the eigenspace
of the Catmull-Clark subdivision matrix, depends on
the eigen-data of this matrix and on cubic B-spline
basis functions. To minimize the number of
calculations, we firstly evaluate the basis functions
since they only depend on the local coordinates of each
point in the discretization, so they can be used for
every patch. Then we evaluate the surface using a
CUDA implementation of the function EvalSurf
described in [Stam 1998], also calculating the first
derivatives at each direction.

With position and derivatives it is straightforward
to get the metric. The positions and derivatives data are
kept in OpenGL vertex buffer objects to be used in the
drawing of the surface.

4.3. Solving Reaction-Diffusion

In CUDA we create special functions called kernels,
that are executed in parallel, each one in one CUDA
thread. The threads are distributed hierarchically in
blocks and grids, such that threads form a one, two or
three-dimensional block, and blocks form a one, two or
three-dimensional grid. Each thread block is managed
by one GPU core, that executes a group of 32 threads
called warp. If all the threads in a warp execute the
same instructions then they are all executed in parallel,
otherwise each execution path is executed serially. So
to prevent loosing performance it is important to

distribute the threads such that in the same block most
of the kernels have the same execution path.

Another important issue refers to the memory
management. Using appropriate structures we can
improve the performance of the reading/writing
operations. In our case, using the texture and surface
memories we get the best performance in the execution
of threads in the same warp that read texture addresses
that are close together in 2D.

To solve the Reaction-Diffusion equations, we
distribute the threads such that each block processes
points in the same patch of the surface. This way we
prevent that threads in the same warp execute data that
are not close in 2D. Each block is two-dimensional,
containing a total number of threads that is a multiple
of 32, such that none of the warps contains less than
the maximum warp size. The blocks are organized in
three-dimensional grids (this requires a GPU with
CUDA capabilities 2.0 or above), where the first two
dimensions correspond to the block distribution in a
patch, and the third dimension indicates the patch
index. Each kernel will process the point at coordinates

 of patch , where ,
 To identify and at

each kernel, we calculate:
int i = blockIdx.x*blockDim.x +
 threadIdx.x + 1;
int j = blockIdx.y*blockDim.y +
 threadIdx.y + 1;
int p = blockIdx.z;

If is not a multiple of the block dimensions, then
in some blocks we will have or , we can
ignore these cases, but this reduces the performance of
the program, because there will be some threads in the
same warp with different execution paths. Then it is
better to avoid these cases always when it is possible,
choosing properly the block dimensions.

After identifying the position and patch index, each
kernel calculates the values of the rates of change
and of each concentration, and keep these values in
the per-thread local memory. Then we call the function
__syncthreads() to make sure that all threads have
already computed the rates of change before we change
the values of and . This is done in two steps, first we
solve the non-linear part of the equation using a
forward Euler method. For the linear part we use a
simple iterative method to solve the implicit equation

, where is the solution at
time , and similarly for concentration .

To update the boundaries, we use a kernel that gets
for each boundary of each patch the corresponding
neighbour patch index and the transition number ,
and uses the transition function to calculate the
position of the cell at the neighbour patch. The

informations about the neighbour patches and the
transition numbers are stored each in an array of size

, created when the surface was constructed.
Then neigh_indices[p*4+e] corresponds to the
neighbour patch index of patch at edge

 Another kernel is responsible for the
corners cells, been called only four times per patch,
calculating the average of the cells next to each cell.

5. Results

For our tests we used an NVIDIA GeForce GTX 470,
which has 448 CUDA cores. We initialize the
concentration values, assigning for most of the points

 of chemical and of , and in some regions
we assign for and for , with a
random noise. In our examples we calculated circular
regions in the domain of the patches, randomly
changing the center and the radius of each circle. This
randomness in the initial conditions avoids too much
symmetrical results, so we can get a larger diversity of
patterns generated by the method.

Figure 1 shows some results of the implementation
of this method. For the first two models we used

 and , for the last two we used
 and . The parameters and

define the size of the spots and stripe, we chose their
values according to the scale of each mesh. The red
points correspond to , blue to , and
yellow to , this is processed in GLSL shaders.

Table 1 shows the time taken to calculate one
iteration of the method for some meshes, changing
only the size of the grids. We used quadrilateral
meshes modeled using some tool or converted from
well known triangular meshes. A limitation of the
structures we used is that there is a limit size for
texture dimensions, so we were not able to run the
program with N = 64 with denser meshes, like Stanford
bunny model. However for those cases it is usually
sufficient to use a small grid size.

Surface N=8 N=16 N=32 N=64

Toroidal 128 2ms 6ms 16ms 60ms

Fertility 166 3ms 7ms 22ms 75ms

Dog 238 4ms 10ms 30ms 107ms

Bunny 1292 29ms 56ms 160ms ---

Table 1: Time taken to calculate one iteration,
varying the model and grid size.

6. Conclusion and Future Works

In this work we showed how to solve the system of
Reaction-Diffusion on surfaces using a GPU imple-
mentation using a parametrization of Catmull-Clark
surfaces. We used suitable structures to take advantage

of the GPU resources, increasing the performance of
the numeric solution. For future works we may study
different schemes, to generate more complex results,
simulating for example natural patterns formed on the
skin of animals.

References

ARIS, R., 1989. Vectors, Tensors and the Basic Equations of
Fluid Mechanics. Dover Publications.

BAJAJ, C., ZHANG, Y. and XU, G., 2008. Physically-based
surface texture synthesis using a coupled finite element
system. In Proceedings of the 5th international
conference on Advances in geometric modeling and
processing, GMP’08, Berlin, Heidelberg. Springer-
Verlag.

CATMULL, E. and CLARK, J., 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes.
Computer-aided Design, 10:350–355. doi: 10.1016/0010-
4485(78)90110-0.

GRAY, P. and SCOTT, S.K., 1985. Sustained oscillations and
other exotic patterns of behavior in isothermal reactions.
J. phys. Chem., 89, pp. 22–32

EPSTEIN, I.R. and POJMAN, J.A., 1998. An Introduction to
Nonlinear Chemical Dynamics . Topics in Physical
Chemistry. Oxford University Press, New York.

MARK, W.R., GLANVILLE, R.S., AKELEY, K., and KILGARD,
M.J., 2003. Cg: a system for programming graphics
hardware in a c-like language. ACM Trans. Graph.. ISSN
0730-0301. doi: 10.1145/882262.882362.

NVIDIA, 2011. NVIDIA CUDA Programming Guide 4.1.

SANDERSON, A.R., KIRBY, R.M., JOHNSON, C.R., and YANG,
L., 2006. Advanced Reaction-Diffusion Models for
Texture Synthesis. Journal of Graphics Tools, 11(3):47–
71.

SANDERSON, A.R., Meyer, M.D., Kirby, R.M. and Johnson,
C.R., 2009. A framework for exploring numerical
solutions of advection-reaction-diffusion equations using
a gpu-based approach. Comput. Vis. Sci. ISSN 1432-
9360. doi: 10.1007/s00791-008-0086-0. 12(4):155–170.

STAM, J., 1998. Exact evaluation of catmull-clark subdivision
surfaces at arbitrary parameter values. In Proceedings of
SIGGRAPH-1998, 395–404.

STAM, J., 2003. Flows on surfaces of arbitrary topology.
ACM Trans. Graph., 22(3): 724–731.

TURING, A.M., 1952. The chemical basis of morphogenesis.
Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences, 237(641):37–72.

