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Figure 1: Some results of  the method. Complex patterns are formed in a few seconds using CUDA.

Abstract

In this paper we present a method to create textures on 
smooth surfaces of arbitrary topology using Reaction-
Diffusion systems in a graphics processing unit (GPU). 
To do this we use a parametrization of Catmull-Clark 
subdivision surfaces and obtain the metric information 
of the distortion caused by this parametrization, so we 
can calculate differential operators of functions defined 
on  this  surface.  Then  we  solve  the  systems  in  the 
domain of parametrization of each patch. This process 
can  be  done  in  parallel  for  each  point  in  the  dis-
cretization of the surface, so the GPU implementation 
can heavily increase the velocity of computation.
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1. Introduction and Related Work

Turing [1952] described for the first time a chemical 
mechanism  for  pattern  formation  which  is  called 
Reaction-Diffusion, where two or more chemicals react 
one with the other, and they diffuse at different rates, 
resulting in stable patterns like spots and stripes. This 
mechanism has been replicated and expanded over the 
years  by  researchers  in  several  areas  [Epstein  and 
Pojman, 1998]. Turk [1991] used it to generate textures 
that match the geometry of polyhedral surfaces. More-
over,  Sanderson  et  al.  [2006]  used  many  Reaction-
Diffusion  models  for  textures  synthesis.  Bajaj  et  al. 
[2008] gave an approach to solve Reaction-Diffusion 
systems  on  surfaces  using  a  Galerkin  based  finite 
element methods. 

The mechanism of  Reaction-Diffusion  involves  a 
numeric  solution  of  a  non-linear  partial  differential 
equations system. This nonlinearity makes it difficult 
to select appropriate parameters in order to ensure the 
formation  of  stable  patterns,  which  may take  to  the 
user  many  attempts  to  obtain  a  reasonable  result. 
Another  problem  is  that  the  solution  can  be 
computational  expensive,  such  that  it  can  be  time 
consuming. To minimize this problem, algorithms can 
take  advantage  of  multiple  processors  computers, 
solving the PDEs in parallel.  A good choice is using 
the  Graphics  Processing  Units  (GPUs),  that  were 
originally developed to accelerate graphics operations, 
like  the  rendering  of  a  virtual  scenario,  but  recently 
they have been used to solve more general  problems 
that  requires  compute-intensive  parallel  computation, 
due to the design of those units. In this case we can say 
that  they are  General  Purpose GPUs,  or  simply GP-
GPU. In [Sanderson et al. 2009] it is described a GP-
GPU-based  approach  for  solving  partial  differential 
equations (PDEs) for Reaction-Diffusion models using 
Cg  (C  for  graphics)  [Mark  et  al.  2003],  but  this 
language requires that the programmers understand the 
graphics processing  pipeline, and know how to solve 
their  problems  in  this  context.  NVIDIA  developed 
CUDA,  a  general  purpose  parallel  computing 
architecture  that  allows  the  programmers  to  develop 
programs that run in the GPU using C as a high-level 
programming  language  [NVIDIA  2011].  With  this 
architecture  it  is  not  necessary  for  the  developer  to 
know the graphics pipeline, so it  is possible to make 
programs  in  the  GPU  without  having  to  adapt  the 
solution of a problem to the graphics pipeline. 

Stam [2003] developed a method to simulate fluids 
on surfaces  of arbitrary topology solving the Navier-
Stokes  equations  in  the  domain  of  the  surface 
parametrization.  His  method  handles  the  distortion 



caused  by  the  parametrization  and  cross-patch 
boundary  conditions.  The  author  used  a  parametri-
zation of a Catmull-Clark surface [Catmull and Clark 
1978], using his evaluation method described in [Stam 
1998]. It was briefly shown that this technique can be 
used in the solution of other types of equations, like the 
Reaction-Diffusion systems. 

In  our  work  we made  a  GPU implementation  in 
CUDA  of  the  scheme  introduced  by  Stam  to  solve 
Reaction-Diffusion models on parametric surfaces. 

2. Basic concepts

Let  be a surface formed by parametric patches 
,  where  ,  and 

. We 
use the tangent vectors 

where   is omitted to simplify notation, to define the 
local metric matrix : 

from which we get . The elements of the 
inverse matrix are denoted by .

With this metric, we calculate differential operators 
of functions defined on  [Aris 1989]. In particular, the 
Laplacian is given by

where  we  are  using  Einstein's  notation  (where 
), with indices from 1 to 2.

To handle the intersection of adjacent patches, we 
use  the  transition  functions  defined  in  [Stam 2003]. 
Each edge of a domain  receives a label from 0 to 3, 
and the transition function from patch  to an adjacent 
patch  is calculated from a transition number  that 
depends  only  on  the  labels  of  the  common edge  of 
these patches.

In this work we use the Catmull-Clark subdivision 
scheme,  with  the  evaluation  technique  developed  by 
Stam [1998],  that  gives  us  a  parametrization,  where 
each  quadrilateral  in  the  polygonal  base  mesh 
generates a parametric patch .

We discretize a surface like in [Stam 2003], where 
for  each  patch  there  is  a  grid  with     cells 
containing values from the patch, and there is an extra 
layer of cells with values from neighbour patches. The 
metric values from the parametrization are stored in a 
denser  grid  with   points.  The 
Laplacian operator is discretized by a finite differences 
scheme for the derivatives, using metric values.

3. Reaction-Diffusion Systems

Reaction-Diffusion  systems  are  defined  by  the  non-
linear partial differential equations: 

where   and   are substances distributed in space,   
and  are functions that control the production rate of 

 and , and the coefficients  and  are the diffusion 
rates. 

These  substances  are  affected  by  two  processes: 
local  chemical  reactions,  which  means  that  the 
substances  are  transformed  into  each  other,  and 
diffusion  which  causes  the  substances  to  spread  out 
over a surface in space. 

We  consider  the  Reaction-Diffusion  model 
developed by Gray and Scott [1985], which is defined 
by 

where  and  are real parameters. 

Depending on the initial conditions the solution of 
this system forms different patterns. It is necessary to 
choose appropriate values for the parameters   and , 
otherwise  the  result  converge  in  time  to  a  trivial 
solution like  and  for all points.

4. Implementation in the GPU

We see that the problem described here can be easily 
parallelized, so it is suitable to be solved using many 
core processors,  which can considerably improve the 
performance of the method.

4.1 Data Structures 

To  implement  the  method  in  CUDA,  firstly  the 
problem data must be transfered to the GPU memory. 
In CPU the grid data are stored in arrays of size w × h 
× n_patches, where n_patches is the number of patches 
of  the  surface,  such  that  the  value  v(i,j,p) at 
position  and patch  is 
accessed via  v[i+j*w+p*w*h].  For scalar  fields we 
have  w=h= N+2, so the value   of a scalar field   
centered  at  cell   and  patch   is  stored  at 
phi(i,j,p). For the metric we use  w=h=2*N+1  to 
store  the  values   and  .  The  value 

 is accessed via  g(2*i-1, 2*j-1, p),  and 
similarly for the other values. The arrays could be just 
copied to the GPU global memory using arrays in the 
same format and be used the same way as in the CPU, 
but  this  way  would  not  take  advantage  of  the  GPU 
capabilities. A better option is put data in the texture or 



surface memory, which are cached in the texture cache, 
optimized for 2D spatial locality. In our case we can 
use a layered surface reference putting the data of each 
patch in a layer. The data of the patches are stored in 
CUDA  arrays  created  with  cudaMalloc3DArray() 
and copied from and to CPU using cudaMemcpy3D(). 
The value  g(i,j,p) in surface  memory is accessed 
via  surf2DLayeredread(&a,surf_ref,i*4,j,p) 
where surf_ref is the surface reference bound to the 
corresponding CUDA array, and we have to multiply 
the  x-coordinate  by  the  byte  size  of  the  element 
because surface memory uses byte addressing. We can 
also write in the grid using 
surf2DLayeredwrite(a,surf_ref,i*4,j,p). 

4.2 Precomputing 

The  surface  evaluation  needs  to  be  calculated  only 
once, we calculate for each point of the discretization 
its  position  on  the  surface,  the  derivatives  for  each 
direction   and  ,  and  from that  we calculate  the 
metric information. 

The surface is evaluated with an implementation in 
CUDA of the method described in [Stam 1998]. Each 
point  on  the  surface  can  be  evaluated  by 

 where   is  the 
number of control  points used by patch  ,   is  the 
projection of the i-th control point into the eigenspace 
of the Catmull-Clark subdivision matrix,  depends on 
the  eigen-data  of  this  matrix  and  on  cubic  B-spline 
basis  functions.  To  minimize  the  number  of 
calculations,  we  firstly  evaluate  the  basis  functions 
since they only depend on the local coordinates of each 
point  in  the  discretization,  so  they  can  be  used  for 
every  patch.  Then  we  evaluate  the  surface  using  a 
CUDA  implementation  of  the  function  EvalSurf 
described  in  [Stam  1998],  also  calculating  the  first 
derivatives at each direction. 

With position and derivatives it is straightforward 
to get the metric. The positions and derivatives data are 
kept in OpenGL vertex buffer objects to be used in the 
drawing of the surface. 

4.3. Solving Reaction-Diffusion 

In CUDA we create special  functions called  kernels, 
that are executed in parallel, each one in one CUDA 
thread.  The  threads  are  distributed  hierarchically  in 
blocks and grids, such that threads form a one, two or 
three-dimensional block, and blocks form a one, two or 
three-dimensional grid. Each thread block is managed 
by one GPU core, that executes a group of 32 threads 
called  warp.  If  all the threads in a warp execute the 
same instructions then they are all executed in parallel, 
otherwise each execution path is executed serially. So 
to  prevent  loosing  performance  it  is  important  to 

distribute the threads such that in the same block most 
of the kernels have the same execution path. 

Another  important  issue  refers  to  the  memory 
management.  Using  appropriate  structures  we  can 
improve  the  performance  of  the  reading/writing 
operations. In our case, using the texture and surface 
memories we get the best performance in the execution 
of threads in the same warp that read texture addresses 
that are close together in 2D. 

To  solve  the  Reaction-Diffusion  equations,  we 
distribute the threads  such that  each  block  processes 
points in the same patch of the surface. This way we 
prevent that threads in the same warp execute data that 
are  not close in 2D.  Each  block is two-dimensional, 
containing a total number of threads that is a multiple 
of 32, such that none of the warps contains less than 
the maximum warp size. The blocks are organized in 
three-dimensional  grids  (this  requires  a  GPU  with 
CUDA capabilities 2.0 or above), where the first two 
dimensions correspond  to the  block distribution in  a 
patch,  and  the  third  dimension  indicates  the  patch 
index. Each kernel will process the point at coordinates

 of  patch  ,  where  , 
 To identify  and  at 

each kernel, we calculate: 
int i = blockIdx.x*blockDim.x + 
         threadIdx.x + 1; 
int j = blockIdx.y*blockDim.y + 
         threadIdx.y + 1; 
int p = blockIdx.z; 

If  is not a multiple of the block dimensions, then 
in some blocks we will have  or , we can 
ignore these cases, but this reduces the performance of 
the program, because there will be some threads in the 
same warp with different  execution paths.  Then it  is 
better to avoid these cases always when it is possible, 
choosing properly the block dimensions. 

After identifying the position and patch index, each 
kernel calculates the values of the rates of change   
and  of each concentration, and keep these values in 
the per-thread local memory. Then we call the function 
__syncthreads() to make sure that all threads have 
already computed the rates of change before we change 
the values of  and . This is done in two steps, first we 
solve  the  non-linear  part  of  the  equation  using  a 
forward  Euler  method.  For  the  linear  part  we  use  a 
simple iterative method to solve the implicit equation 

, where  is the solution at 
time , and similarly for concentration .

To update the boundaries, we use a kernel that gets 
for  each  boundary  of  each  patch  the  corresponding 
neighbour  patch  index  and the  transition number  , 
and  uses  the  transition  function  to  calculate  the 
position  of  the  cell  at  the  neighbour  patch.  The 



informations  about  the  neighbour  patches  and  the 
transition numbers  are stored each in an array of size 

, created when the surface was constructed. 
Then  neigh_indices[p*4+e] corresponds  to  the 
neighbour  patch  index  of  patch   at  edge 

 Another  kernel  is  responsible  for  the 
corners  cells,  been  called  only four times  per  patch, 
calculating the average of the cells next to each cell. 

5. Results

For our tests we used an NVIDIA GeForce GTX 470, 
which has  448  CUDA  cores.  We  initialize  the  
concentration values, assigning for most of the points 

 of chemical  and  of , and in some regions 
we  assign   for   and   for  ,  with  a   
random noise. In our examples we calculated circular 
regions  in  the  domain  of  the  patches,  randomly 
changing the center and the radius of each circle. This 
randomness in the initial conditions avoids too much 
symmetrical results, so we can get a larger diversity of 
patterns generated by the method.

Figure 1 shows some results of the implementation 
of  this  method.  For  the  first  two  models  we  used 

 and  ,  for  the  last  two  we  used 
 and  .  The  parameters   and   

define the size of the spots and stripe, we chose their 
values  according to the scale of each  mesh. The red 
points  correspond  to  ,  blue  to  ,  and 
yellow to , this is processed in GLSL shaders.

Table  1  shows  the  time  taken  to  calculate  one 
iteration  of  the  method  for  some  meshes,  changing 
only  the  size  of  the  grids.  We  used  quadrilateral 
meshes  modeled  using  some tool  or  converted  from 
well  known  triangular  meshes.  A  limitation of  the  
structures  we  used  is  that  there  is  a  limit  size  for 
texture dimensions,  so  we  were  not  able  to  run  the  
program with N = 64 with denser meshes, like Stanford 
bunny  model. However  for  those  cases  it  is  usually  
sufficient to use a small grid size. 

Surface N=8 N=16 N=32 N=64

Toroidal 128 2ms 6ms 16ms 60ms

Fertility 166 3ms 7ms 22ms 75ms

Dog 238 4ms 10ms 30ms 107ms

Bunny 1292 29ms 56ms 160ms ---

Table 1: Time taken to calculate one iteration, 
varying the model and grid size.

6. Conclusion and Future Works

In this work we showed how to solve the system of 
Reaction-Diffusion  on  surfaces  using  a  GPU imple-
mentation  using a   parametrization  of  Catmull-Clark 
surfaces. We used suitable structures to take advantage

of the GPU resources,  increasing the performance of 
the numeric solution. For future works we may study 
different schemes,  to  generate  more complex results,  
simulating for example natural patterns formed on the 
skin of animals.
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